Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
J Dev Biol ; 12(2)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38651455

RESUMO

Gap junctional connection (GJC) in the cumulus-oocyte complex (COC) provides necessary support for message communication and nutrient transmission required for mammalian oocyte maturation. Cyclic adenosine monophosphate (cAMP) is not only a prerequisite for regulating oocyte meiosis, but also the key intercellular factor for affecting GJC function in COCs. However, there are no reports on whether cAMP regulates connexin 37 (Cx37) expression, one of the main connexin proteins, in sheep COCs. In this study, the expression of Cx37 protein and gene in immature sheep COC was detected using immunohistochemistry and PCR. Subsequently, the effect of cAMP on Cx37 expression in sheep COCs cultured in a gonadotropin-free culture system for 10 min or 60 min was evaluated using competitive ELISA, real-time fluorescent quantitative PCR (RT-qPCR), and Western blot. The results showed that the Cx37 protein was present in sheep oocytes and cumulus cells; the same results were found with respect to GJA4 gene expression. In the gonadotropin-free culture system, compared to the control, significantly higher levels of cAMP as well as Cx37 gene and protein expression were found in sheep COCs following treatment in vitro with Forskolin and IBMX (100 µM and 500 µM)) for 10 min (p < 0.05). Compared to the controls (at 10 or 60 min), cAMP levels in sheep COCs were significantly elevated as a result of Forskolin and IBMX treatment (p < 0.05). Following culturing in vitro for 10 min or 60 min, Forskolin and IBMX treatment can significantly promote Cx37 expression in sheep COCs (p < 0.05), a phenomenon which can be counteracted when the culture media is supplemented with RP-cAMP, a cAMP-specific competitive inhibitor operating through suppression of the protein kinase A (PKA). In summary, this study reports the preliminary regulatory mechanism of cAMP involved in Cx37 expression for the first time, and provides a novel explanation for the interaction between cAMP and GJC communication during sheep COC culturing in vitro.

2.
Eur J Pharmacol ; 970: 176508, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493913

RESUMO

Necroptosis is a pivotal contributor to the pathogenesis of various human diseases, including those affecting the nervous system, cardiovascular system, pulmonary system, and kidneys. Extensive investigations have elucidated the mechanisms and physiological ramifications of necroptosis. Among these, protein phosphorylation emerges as a paramount regulatory process, facilitating the activation or inhibition of specific proteins through the addition of phosphate groups to their corresponding amino acid residues. Currently, the targeting of kinases has gained recognition as a firmly established and efficacious therapeutic approach for diverse diseases, notably cancer. In this comprehensive review, we elucidate the intricate role of phosphorylation in governing key molecular players in the necroptotic pathway. Moreover, we provide an in-depth analysis of recent advancements in the development of kinase inhibitors aimed at modulating necroptosis. Lastly, we deliberate on the prospects and challenges associated with the utilization of kinase inhibitors to modulate necroptotic processes.


Assuntos
Neoplasias , Proteínas Quinases , Humanos , Fosforilação , Proteínas Quinases/metabolismo , Necroptose , Neoplasias/tratamento farmacológico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
3.
J Org Chem ; 89(5): 3259-3270, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380616

RESUMO

The NaOAc-assisted aerobic oxidation reaction of pentacoordinate hydrospirophosphoranes and dichalcogenyl compounds with open air as a green oxidant has been developed under mild conditions. A series of novel pentacoordinate spirophosphoranes with P-Se/P-S bonds were synthesized in excellent yields. The reaction mechanism was determined by 31P nuclear magnetic resonance tracing experiments, high-resolution mass spectrometry tracing experiments, and X-ray diffraction analysis. The method features a broad substrate scope, good functional group tolerance, and a high degree of atomic utilization and is meaningful for the synthesis of bioactive chalcogenphosphate compounds with chalcogen and phosphorus moieties.

4.
Chem Commun (Camb) ; 60(20): 2748-2751, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38362617

RESUMO

Drawing inspiration from the initiating amino acid modification in biosynthetic peptides, we have successfully demonstrated a biomimetic mechanism for N-to-C terminal extension in prebiotic peptide synthesis. This achievement was accomplished by using acetylated amino acid amides as the N-terminal substrate for peptide synthesis and amino acid amides as the C-terminal extension, with the reaction carried out in a dry-wet cycle at 80 °C without requiring any activators. This provides a plausible pathway for the formation of prebiotic peptides.


Assuntos
Amidas , Peptídeos , Peptídeos/química , Amidas/química , Aminoácidos/química
5.
Natl Sci Rev ; 11(2): nwad329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384740

RESUMO

As the cornerstone mission of the fourth phase of the Chinese Lunar Exploration Program, Chang'E-7 (CE-7) was officially approved, and implementation started in 2022, including a main probe and a communication relay satellite. The main probe, consisting of an orbiter, a lander, a rover and a mini-flying probe, is scheduled to be launched in 2026. The lander will land on Shackleton crater's illuminated rim near the lunar south pole, along with the rover and mini-flying probe. The relay satellite (named Queqiao-2) will be launched in February 2024 as an independent mission to support relay communication during scientific exploration undertaken by Chang'E-4, the upcoming Chang'E-6 in 2024 and subsequent lunar missions. The CE-7 mission is mainly aimed at scientific and resource exploration of the lunar south pole. We present CE-7's scientific objectives, the scientific payloads configuration and the main functions for each scientific payload with its key technical specifications.

6.
Foods ; 13(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38254493

RESUMO

Jujube is a plant native to China that could be used in medicine and food. Its dried fruit is a superior herb commonly used in traditional Chinese medicine formulations for its calming effect and for nourishing the blood and strengthening the spleen and stomach. Jujube contains numerous active components including polysaccharides, phenols, and triterpene acids, which show a diverse array of pharmacological activities such as neuroprotection and the prevention and treatment of cardiovascular diseases. In this paper, the research status of jujube over the past two decades has been statistically evaluated. Meanwhile, by tracking the latest research advances, the pharmacological efficacy and molecular mechanisms of jujube are exhaustively expounded to provide specific and systematic references for further research on the pharmacological effects of jujube and its application in the food and pharmaceutical industries.

7.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958831

RESUMO

Plant proteins are a good source of active peptides, which can exert physiological effects on the body. Predicting the possible activity of plant proteins and obtaining active peptides with oral potential are challenging. In this study, the potential activity of peptides from Zizyphus jujuba proteins after in silico simulated gastrointestinal digestion was predicted using the BIOPEP-UWM™ database. The ACE-inhibitory activity needs to be further investigated. The actual peptides in mouse intestines after the oral administration of Zizyphus jujuba protein were collected and analyzed, 113 Zizyphus jujuba peptides were identified, and 3D-QSAR models of the ACE-inhibitory activity were created and validated using a training set (34 peptides) and a test set (12 peptides). Three peptides, RLPHV, TVKPGL and KALVAP, were screened using the 3D-QSAR model and were found to bind to the active sites of the ACE enzyme, and their IC50 values were determined. Their values were 6.01, 3.81, and 17.06 µM, respectively. The in vitro digestion stabilities of the RLPHV, TVKPGL, and KALVAP peptides were 82%, 90%, and 78%. This article provides an integrated method for studying bioactive peptides derived from plant proteins.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Ziziphus , Animais , Camundongos , Inibidores da Enzima Conversora de Angiotensina/química , Ziziphus/metabolismo , Peptídeos/química , Peptidil Dipeptidase A/metabolismo , Proteínas de Plantas , Digestão , Angiotensinas
8.
Dalton Trans ; 52(48): 18247-18256, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997638

RESUMO

The direct oxygenation of alkylarenes at the benzylic position employing bioinspired nonheme catalysts has emerged as a promising strategy for the production of bioactive arene ketone scaffolds in drugs. However, the structure-activity relationship of the active species and the mechanism of these reactions remain elusive. Herein, the reaction mechanism of the Mn(II)-mediated benzylic oxygenation of phenylbutanoic acid (PBA) to 4-oxo-4-phenylbutyric acid (4-oxo-PBA) by H2O2 was investigated using density functional theory calculations. The calculated results demonstrated that the MnIII-OOH species (1) is a sluggish oxidant and needs to be converted to a high-valent manganese-oxo species (2). The conversion of PBA to 4-oxo-PBA by 2 occurs via the consecutive hydroxylation of PBA to 4-hydroxyl-4-phenylbutyric acid (4-OH-PBA) and the alcohol oxidation of 4-OH-PBA to 4-oxo-PBA. The hydroxylation of PBA proceeds via a novel hydride transfer/hydroxyl-rebound mechanism and the alcohol oxidation of 4-OH-PBA occurs via three pathways (gem-diol, dual hydrogen abstraction (DHA), and reversed-DHA pathways). The regio-selectivity of benzylic oxidations was caused by a strong π-π stacking interaction between the pyridine ring of the nonheme ligand and the phenyl ring of the substrate. These mechanistic findings enrich the knowledge of biomimetic alcohol oxidations and play a positive role in the rational design of new non-heme catalysts.

9.
J Org Chem ; 88(24): 17521-17526, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37990818

RESUMO

An efficient and environmentally friendly electrochemical synthesis of phosphorylated oxindoles and indolo[2,1-a]isoquinolin-6(5H)-ones mediated by readily available Cp2Fe has been developed, which illustrated a broad substrate scope and diverse functional group compatibility. This protocol featured an external oxidant-free process and was at room temperature, which was proposed to be driven by the anodic oxidation of Cp2Fe.

10.
Anal Chem ; 95(46): 16830-16839, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37943818

RESUMO

Metabolite isomers play diverse and crucial roles in various metabolic processes. However, in untargeted metabolomics analysis, it remains a great challenge to distinguish between the constitutional isomers and enantiomers of amine-containing metabolites due to their similar chemical structures and physicochemical properties. In this work, the triplex stable isotope N-phosphoryl amino acids labeling (SIPAL) is developed to identify and relatively quantify the amine-containing metabolites and their isomers by using chiral phosphorus reagents coupled with high-resolution tandem mass spectroscopy. The constitutional isomers could be effectively distinguished with stereo isomers by using the diagnosis ions in MS/MS spectra. The in-house software MS-Isomerism has been parallelly developed for high-throughput screening and quantification. The proposed strategy enables the unbiased detection and relative quantification of isomers of amine-containing metabolites. Based on the characteristic triplet peaks with SIPAL tags, a total of 854 feature peaks with 154 isomer groups are successfully recognized as amine-containing metabolites in liver cells, in which 37 amine-containing metabolites, including amino acids, polyamines, and small peptides, are found to be significantly different between liver cancer cells and normal cells. Notably, it is the first time to identify S-acetyl-glutathione as an endogenous metabolite in liver cells. The SIPAL strategy could provide spectacular insight into the chemical structures and biological functions of the fascinating amine-containing metabolite isomers. The feasibility of SIPAL in isomeric metabolomics analysis may reach a deeper understanding of the mirror-chemistry in life and further advance the discovery of novel biomarkers for disease diagnosis.


Assuntos
Aminoácidos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Indicadores e Reagentes , Isomerismo , Cromatografia Líquida/métodos , Aminoácidos/química , Metabolômica/métodos , Poliaminas
11.
Endocr Connect ; 12(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855365

RESUMO

Gap junction channels in cumulus-oocyte complexes (COCs) enable the transmission and communication of small molecular signals between adjacent cells, such as cAMP. However, the regulation of gap junction function (GJF) by cAMP and the underlying mechanisms involved are not fully clarified. This study investigated the effect of cAMP on connexin 43 (CX43) expression and GJF in ovine COCs using immunofluorescence, quantitative real-time PCR (qRT-PCR), western blotting, and GJF detection. The CX43 was only found in the cumulus cells (CCs) side of ovine COC. The intra-oocyte cAMP showed a significant increase at 30 min, while the intra-CC cAMP exhibited two peaks at 10 min and 1 h during in vitro maturation (IVM). Phosphorylated CX43 protein exhibited an immediate increase at 10 min, and CX43 protein displayed two peaks at 10 min and 1 h during IVM. The duration of pre-IVM exposure to forskolin and IBMX significantly enhanced phosphorylated and total CX43, as well as Gja1 and Creb genes, for 10 min; these effects were counteracted by Rp-cAMP. Both pre-IVM with forskolin and IBMX for 1 h and the GJF and CX43/p-CX43 ratio were elevated. The closure of gap junction channels caused by phosphorylated CX43 to prevent cAMP outflow from oocytes in early IVM of COC. Cyclic AMP upregulated phosphorylated and total CX43 via genomic and non-genomic pathways, but its functional regulation was dependent on the balance of the two proteins. This study provides a new insight into the regulatory mechanism between cAMP and GJF, which would improve IVM in animal and clinical research.

12.
Sci Rep ; 13(1): 17400, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833498

RESUMO

Extensive investigations in outer space have revealed not only how life adapts to the space environment, but also that interesting biophysical phenomena occur. These phenomena affect human health and other life forms (animals, plants, bacteria, and fungi), and to ensure the safety of future human space exploration need to be further investigated. This calls for joint research efforts between biologists and physicists, as these phenomena present cross-disciplinary barriers. Various national organizations provide useful forums for bridging this gap. Additional discussion avenues and database resources are helpful for facilitating the interdisciplinary investigations of these phenomena. In this paper, we present the newly established Space Life Investigation Database (SpaceLID, https://bidd.group/spacelid/ ) which provides information about biophysical phenomena occurring in space. Examples obtained using the database are given while discussing the underlying causes of these phenomena and their implications for the physiology and health of life in space.


Assuntos
Meio Ambiente Extraterreno , Voo Espacial , Animais , Humanos , Fenômenos Biofísicos , Adaptação Fisiológica , Plantas
13.
Chem Commun (Camb) ; 59(77): 11592, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37718962

RESUMO

Correction for 'Stannyl phosphaketene as a synthon for phosphorus analogues of ß-lactams' by Yong-an Luo et al., Chem. Commun., 2023, https://doi.org/10.1039/d3cc03117a.

14.
Nutrients ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764772

RESUMO

Non-alcoholic fatty liver disease (NAFLD) manifests as a persistent liver ailment marked by the excessive buildup of lipids within the hepatic organ accompanied by inflammatory responses and oxidative stress. Alanyl-glutamine (AG), a dipeptide comprising alanine and glutamine, is commonly employed as a nutritional supplement in clinical settings. This research aims to evaluate the impact of AG on NAFLD triggered by a high-fat diet (HFD), while concurrently delving into the potential mechanisms underlying its effects. The results presented herein demonstrate a notable reduction in the elevated body weight, liver mass, and liver index induced by a HFD upon AG administration. These alterations coincide with the amelioration of liver injury and the attenuation of hepatic histological advancement. Furthermore, AG treatment manifests a discernible diminution in oil-red-O-stained regions and triglyceride (TG) levels within the liver. Noteworthy alterations encompass lowered plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDLC) concentrations, coupled with elevated high-density lipoprotein cholesterol (HDLC) concentrations. The mitigation of hepatic lipid accumulation resultant from AG administration is aligned with the downregulation of ACC1, SCD1, PPAR-γ, and CD36 expression, in conjunction with the upregulation of FXR and SHP expression. Concomitantly, AG administration leads to a reduction in the accumulation of F4/80-positive macrophages within the liver, likely attributable to the downregulated expression of MCP-1. Furthermore, AG treatment yields a decline in hepatic MDA levels and a concurrent increase in the activities of SOD and GPX. A pivotal observation underscores the effect of AG in rectifying the imbalance of gut microbiota in HFD-fed mice. Consequently, this study sheds light on the protective attributes of AG against HFD-induced NAFLD through the modulation of gut microbiota composition.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Fígado/metabolismo , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Dipeptídeos/metabolismo , Colesterol/metabolismo , Camundongos Endogâmicos C57BL
15.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764264

RESUMO

Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized by Rolf Huisgen in 1960, find extensive application in contemporary heterocyclic chemistry. In terms of green synthesis, the multicomponent 1,3-dipolar cycloaddition is highly favored owing to its numerous advantages, including high step- and atom-economies, remarkable product diversity, as well as excellent efficiency and diastereoselectivity. Among the numerous pieces of research, the most fascinating reaction involves the utilization of azomethine ylides generated from isatins and amino acids that can be captured by various dipolarophiles. This approach offers a highly efficient and convenient method for constructing spiro-pyrrolidine oxindole scaffolds, which are crucial building blocks in biologically active molecules. Consequently, this review delves deeper into the dipolarophiles utilized in the 1,3-dipolar cycloaddition of isatins and amino acids over the past six years.

16.
Chem Commun (Camb) ; 59(73): 10956-10959, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37608644

RESUMO

The reaction of the stannyl phosphaketene (Nacnac)SnPCO 1 (Nacnac = CH{(CMe)(2,6-iPr2C6H3N)}2) with B(C6F5)3 produced the 1,4-addition product of (Nacnac)SnPCO(B(C6F5)3). However, the corresponding reactions in the presence of dimethyl maleate, diisopropyl fumarate or diethyl-but-2-ynedioate gave [2+2] addition yielding four-membered phosphacycles, ((Nacnac)Sn(MeO2C))CHPC(OB(C6F5)3)CH(CO2Me), [(C6F5)3B)PC(OSn)C(CO2Me)CH(CO2Me)]2, (Nacnac)Sn(iPrO2C)CC(OAl(C6F5)3)P[CH(CO2iPr)CH2(CO2iPr)]CH(CO2iPr), and (Nacnac)SnP (EtO2CCC(CO2Et))CO(B(C6F5)3), respectively. In contrast, the corresponding reaction of phenylacetylene gave the FLP-addition product (Nacnac)SnOC(P)C(Ph)CH(B(C6F5)3). Collectively, this reactivity demonstrates that the stannyl phosphaketene 1 can act as a synthon for P-analogues of ß-lactam derivatives.

17.
Analyst ; 148(18): 4548-4556, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37594386

RESUMO

Chiral amino-group compounds are of significance for human health, such as biogenic amino acids (AAs), dipeptides, and even various drugs. Enantiospecific discrimination of these chiral compounds is vital in diagnosing diseases, identifying pathological biomarkers and enhancing pharmaceutical chemistry research. Here, we report a simple and rapid 19F NMR-based strategy to differentiate chiral AAs, dipeptides, and amines, that were derivatized with (R)-2-(2-fluorophenyl)-2-hydroxyacetic acid ((R)-2FHA). As a result, 19 proteinogenic AAs (37 isomers) as well as Gly could be concurrently resolved. Moreover, various mirror-image dipeptides, such as Ser-His, Leu-Leu, and Ala-Ala, were commendably recognized. Intriguingly, we found that the absolute configuration of AAs in the N-terminus of dipeptides decided the relative 19F chemical shifts between two enantiomers. Besides, the ability of this method for enantiodiscrimination was further demonstrated by non-AA amines, including aromatic and aliphatic amines, and even amines having chiral centers several carbons away from the amino-group. The structurally similar antibiotics, amoxicillin and ampicillin, were well discriminated. Furthermore, this method accurately determines the de or dr values of non-racemic mixtures. Therefore, our strategy provides an effective approach for 19F NMR-based enantiodiscrimination and diastereomeric purity determination of amino-group compounds.


Assuntos
Aminas , Antifibrinolíticos , Humanos , Aminoácidos , Imageamento por Ressonância Magnética , Amoxicilina , Dipeptídeos
18.
Inorg Chem ; 62(35): 14261-14278, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37604675

RESUMO

Aromatic hydroxylation of benzoic acids (BzOH) to salicylates and phenolates is fundamentally interesting in industrial chemistry. However, key mechanistic uncertainties and dichotomies remain after decades of effort. Herein, the elusive mechanism of the competitive ortho-/ipso-hydroxylation of BzOH by H2O2 mediated by a nonheme iron(II) catalyst was comprehensively investigated using density functional theory calculations. Results revealed that the long-postulated FeV(O)(anti-BzO) oxidant is an FeIV(O)(anti-BzO•) species 2 (anti- and syn- are defined by the orientation of the carboxyl oxygen of BzO to the oxo), which rules out the noted two-oxidant mechanism proposed previously. We propose a new mechanism in which, following the formation of an FeV(O)(syn-BzO) species (3) and its electromer FeIV(O)(syn-BzO•) (3'), 3/3' either converts to salicylate and phenolate via intramolecular self-hydroxylation (route A) or acts as an oxidant to oxygenate another BzOH to generate the same products (route B). In route A, the rotation of the BzO group along the C-O bond forms 2, in which the BzO group is orientated by π-π stacking interactions. An electrophilic ipso-addition forms a phenolate by concomitant decarboxylation or an ortho-attack forms a cationic complex, which readily undergoes an NIH shift and a BzOH-assisted proton shift to form a salicylate. In route B, 3 oxidizes an additional BzOH molecule directed by hydrogen bonding and π-π stacking interactions. In both routes, selectivity is determined by the chemical property of the BzO ring. These mechanistic findings provide a clear mechanistic scenario and enrich the knowledge of hydroxylation of aromatic acids.

19.
Planta ; 258(3): 58, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528331

RESUMO

Extensive spaceflight life investigations (SLIs) have revealed observable space effects on plants, particularly their growth, nutrition yield, and secondary metabolite production. Knowledge of these effects not only facilitates space agricultural and biopharmaceutical technology development but also provides unique perspectives to ground-based investigations. SLIs are specialized experimental protocols and notable biological phenomena. These require specialized databases, leading to the development of the NASA Science Data Archive, Erasmus Experiment Archive, and NASA GeneLab. The increasing interests of SLIs across diverse fields demand resources with comprehensive content, convenient search facilities, and friendly information presentation. A new database SpaceLID (Space Life Investigation Database http://bidd.group/spacelid/ ) was developed with detailed menu search tools and categorized contents about the phenomena, protocols, and outcomes of 459 SLIs (including 106 plant investigations) of 92 species, where 236 SLIs and 57 plant investigations are uncovered by the existing databases. The usefulness of SpaceLID as an SLI information source is illustrated by the literature-reported analysis of metabolite, nutrition, and symbiosis variations of spaceflight plants. In conclusion, this study extensively investigated the impact of the space environment on plant biology, utilizing SpaceLID as an information source and examining various plant species, including Arabidopsis thaliana, Brassica rapa L., and Glycyrrhiza uralensis Fisch. The findings provide valuable insights into the effects of space conditions on plant physiology and metabolism.


Assuntos
Arabidopsis , Brassica rapa , Voo Espacial , Ausência de Peso , Plantas , Biologia
20.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446696

RESUMO

Ruthenium (Ru)-based organometallic drugs have gained attention as chemotherapeutic and bioimaging agents due to their fewer side effects and excellent physical optical properties. Tuning the electronic structures of Ru complexes has been proven to increase the cytotoxicity of cancer cells and the luminescent efficiency of the analytical probes. However, the relationship between electronic structures and bioactivities is still unclear due to the potential enhancement of both electron donor and acceptor properties. Thus, we investigated the relationship between the electronic structures of Ru(II) complexes and cytotoxicity by optimizing the electron-withdrawing (complex 1), electron-neutral (complex 2), and electron-donating (complex 3) ligands through DFT calculations, bioactivities tests, and docking studies. Our results indicated that it was not sufficient to consider only either the effect of electron-withdrawing or electron-donating effects on biological activities instead of the total electronic effects. Furthermore, these complexes with electron-donating substituents (complex 3) featured unique "off-on" luminescent emission phenomena caused by the various "HOMO-LUMO" distributions when they interacted with DNA, while complex with electron-withdrawing substituent showed an "always-on" signature. These findings offer valuable insight into the development of bifunctional chemotherapeutic agents along with bioimaging ability.


Assuntos
Complexos de Coordenação , Rutênio , Rutênio/química , Piridinas/química , DNA/química , Teoria da Densidade Funcional , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...